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Abstract
We study the kinetics of formation of branched loopless structures in mixtures of particles with
different shapes and functionalities. These systems are treated with the appropriate
Smoluchowski rate equations, including condensation and fragmentation terms, and it is shown
that it is possible to provide a parameter-free description of the assembly process, including the
limit of irreversible aggregation at low temperatures. Using dynamics simulations we provide
evidence of a connection between physical and chemical gelation in low-valence particle
systems, and the possibility of relating ageing time with temperature.

1. Introduction

Self-assembly through aggregation is a ubiquitous process that
can be observed in various situations of technological and
biomedical interest at a number of length and timescales.
Examples are polymer chemistry, aerosol systems, cloud
physics, clusters of galaxies in astrophysics, etc and
as a consequence the physics behind the formation of
branched structures and networks, starting from monomeric
unassembled initial states, is receiving considerable attention
in both molecular and supramolecular systems [1–7].

Aggregation in colloidal suspensions has been studied in
recent years in great detail since it gives rise to both non-
equilibrium and equilibrium phenomena. The final stage of
the aggregation may lead to the formation of an extended
three-dimensional network of bonds connecting independent
molecules, proteins or colloidal particles, the resulting material
being a gel. At the gel point, a persistent network spanning the
sample first appears, the system is then prevented from flowing
yet is not arrested on a mesoscopic length scale. A distinction
is made between irreversible and reversible aggregation, based
on the values of the ratio of the attraction energy to the
thermal energy u0/(kBT ). The final percolating structure
formed by these processes is called a chemical or a physical
gel, due to irreversible or reversible clustering, respectively.
When u0 is much larger than kBT the particles tend to form
bonds that are not destroyed by thermal agitation, and as
a consequence progressively form larger and larger clusters,
ending in a structure spanning the entire sample [8], a process
called chemical gelation. The aggregate often results in fractal
structures, whose dimension is controlled by the kinetics of the

process [9]. During irreversible aggregation, bonds never break
and the final structure of the aggregates results from a delicate
balance between the cluster size dependence of the diffusion
process and the probability to irreversibly stick. Chemical
gelation has been extensively studied in the past, starting
from the pioneering work of Flory [10] and Stockmayer [11]
who developed the first mean field description of gelation,
providing expressions for the cluster size distribution as a
function of the extent of reaction or bond probability p(t),
the ratio of the number of bonded links to the total number of
links, and the critical behavior of the connectivity properties
close to gelation. Flory and Stockmayer (FS) derived the
basic relations between p(t) and the resulting structure in
step polymerizations, under the assumptions that all functional
groups of a given type are equally reactive, all groups react
independently of one another, and that ring formation does
not occur in molecular species of finite size. Only when
p exceeds a critical value pc can infinitely large molecules
grow [10]. In this respect the FS theory describes the
gelation transition as the random percolation of permanent
bonds on a loopless lattice [12]. In reversible aggregation,
bond-breaking events are possible since u0 � kBT and the
equilibrium state, which can also percolate, is characterized
by a distribution of clusters which continuously restructure
on a timescale controlled by the bond lifetime. The value
of the ratio u0/kBT separates the two classes, but any model
of physical aggregation may be turned into a chemical model
by studying its properties following a quench to kBT � u0.
Analogously, applying temperatures comparable to the bond
energy turns an irreversible aggregation model into a physical
one.
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The idea of a close connection between irreversible
and reversible aggregation is already contained in the early
mean field theoretical work of Stockmayer, who solved the
Smoluchowski kinetic equations in the limit of absence of
closed bonding loops. In Stockmayer calculations, at any
time during chemical aggregation, the distribution of clusters
of finite size is identical to that found following equilibrium
statistical mechanics by maximizing the entropy with the
constraint of a fixed number of bonds. Later on, Van Dongen
and Ernst [13] confirmed that the FS distributions are also
solutions of the Smoluchowski equations when bond-breaking
processes are accounted for. According to these theoretical
works a system forming progressively larger loopless branched
aggregates evolves in time via a sequence of states, identical
to the states explored in equilibrium for appropriate values
of the temperature. The equality in the fraction of formed
bonds provides the connection between time during reversible
or irreversible aggregation and temperature in equilibrium.
Van Dongen and Ernst also provided an analytical expression
for the time dependence of the bond probability following a
sudden change in the external control parameters, offering the
first soluble example of reversible self-assembly of loopless
branched structures.

In this paper we will review the Smoluchowski mean
field theory for reversible and irreversible aggregation, along
the lines of approach of van Dongen and Ernst for a binary
system of particles, where the number of reactive sites on the
monomers, called functionality, is 2 and f . We will then
describe a set of molecular dynamics simulations for reversible
and irreversible clustering in order to verify the predictions and
the limits of the theory.

2. Solution of the Smoluchowski equation

The starting point of the theoretical approach is the
Smoluchowski equation for coagulation, where, in order to
allow for reversible aggregation leading to a steady state, a step
in which the aggregates break up in smaller units is inserted in
the rate equations. We consider a binary system made of N
monomers of functionality f and L monomers of functionality
2, the case relevant for the simulations we performed. We
denote by ci,l a cluster containing i monomers of functionality
f and l monomers of functionality 2 and by Ni,l the number of
such clusters, also ci,l = Ni,l/(N + L).

The processes taken into account describe growth of
aggregates through

(i) formation of large clusters ci,l from coalescence of two
smaller clusters;

(ii) disappearance of clusters ci,l due to formation of larger
aggregates.

and are represented by the reactions

c j,m + ci− j,l−m

K j,i− j

�
Fj,i− j,m,l−m

ci,l,

ci,l + c j,m

Ki, j

�
Fi, j,l,m

ci+ j,l+m ,

(1)

with reaction rates given by Ki, j , while the inverse reactions
of cluster break-up are characterized by the rates Fi, j,l,m .
The asymmetry of the rates will be made clear in what
follows. As both coagulation and fragmentation are allowed,
the coagulation equations become

dci,l(t)

dt
= 1

2

∑

j+ j ′=i

∑

m+m′=l

(c j,m K j, j ′c j ′,m′

− Fj, j ′,m,m′ c j+ j ′,m+m′ ) − (2)
∞∑

j=0

∞∑

m=0

(ci,l Ki, j c j,m − Fi,l, j,m ci+ j,l+m), (3)

and are usually complemented with the initial conditions,
e.g. only monomers present ci,l(0) = (Nδi,1δl,0 + Lδi,0δl,1)/

(N + L). The coalescence and fragmentation of clusters are
dominated essentially by two effects, due to the mobility and
the bonding phases of the aggregation. The first one is related
to the diffusive motion of the clusters in the system, the second
to the mechanism of the bonding reaction between clusters.
Correspondingly it is possible to distinguish the following two
limiting cases which depend on the diffusion and aggregation
timescales [14]:

(i) Aggregation is limited by the reaction mechanism, when
diffusion is fast and bonding slow, so that the rate-
controlling step is the chemical reaction leading to
clustering.

(ii) Aggregation is limited by slow diffusion and high sticking
probabilities of the aggregates, the chemical limit of the
aggregation process.

The overall rate constants include both the properties of
the transport of clusters and the bonding reactions and are
determined by the physical system under investigation. In
particular we consider two different types of aggregation,
corresponding respectively to the specific reaction mechanism
at the basis of bonding, K b

i, j , and the time spent by the
clusters in diffusing between coalescence events, K d

i, j . The
total reaction rate can be written as

1

Ki, j
= 1

K b
i, j

+ 1

K d
i, j

. (4)

In the case of aggregation based on diffusion, K d
i, j � K b

i, j
and the leading reaction dominates so that the limiting step is
diffusion, and Ki, j ≈ K d

i, j while for the case in which the
coagulation kinetics dominates K b

i, j � K d
i, j since diffusion

is efficient, then Ki, j ≈ K b
i, j . In other words the clustering

process is controlled by the slowest step but depends on
the microscopic dynamics and on the range of the site–site
interaction. Indeed, only when the site–site interaction is short-
ranged is the probability that two sites on distinct clusters
interact, in the absence of any activation barrier, particularly
small. As a consequence the time required to form a bond
between two nearby clusters can be significantly longer than
the time required for two clusters of any size to diffuse over
distances comparable to the inter-cluster distances.

Reaction dominated kernels are represented by the well
known R A f model for polycondensation or polymerization,
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i.e. bonding of monomers in the case in which they possess
two, three or more adhesive points on their surface. The R A f

model was studied by FS using the bond formation probability
as a parameter, without reference to the kinetic rate equations,
and subsequently shown to be a solution to the Smoluchowski
equations at any time. Regarding the absence of bond loops in
the aggregates, we stress that both the fact that a small fraction
of particle orientations allows the particles to bond and the
fact that the average functionality is very small are important
elements favoring the formation of loopless aggregates [7].
Specificity in the bond interaction and limited valence are thus
crucial for the validity of the above assumptions, according
to which Ki, j is proportional to the number of distinct ways
in which a cluster of size i can bond a cluster of size j , and
Fi, j,l,m is proportional to the number of distinct ways in which
a cluster can break into two clusters of size i and j for f �= 2
and l and m for f = 2, the coefficients of proportionality KS

and FS being, respectively, the rate constants of forming and
breaking a single bond [13]. Since the monomers consist of f -
functional reactive endgroups when two monomers react, the
resulting dimer has 2 f − 2 reactive endgroups, a trimer has
3 f − 4 endgroups, and a general i -mer has i f − 2(i − 1)

endgroups, or σi = ( f − 2) i + 2 free bonds, when loops
are not allowed. In the R A f model, since all end groups are
equally reactive, the reaction rate between two clusters equals
the product of the number of end groups, thus Ki, j = KS σi σ j .

Following Stockmayer, the total number of ways to
distribute the N+L particles to form the distribution of clusters
Ni,l is given by

� = N !L!
N∏

i=1

L∏

l=1

wi,l
Ni,l

1

Ni,l ! , (5)

where i !l!wi,l is the number of ways in which i and l
monomers, with functionalities f and 2, respectively, form a
cluster cn,l

wi,l = f i 2l ( f i − i + l)!
i !l!σi ! , (6)

with σi = ( f − 2)i + 2. The recursion relation

(i + l − 1)wi,l = 1
2

i−1∑

j=0

l−1∑

m=0

σ jσi− j w j,mwi− j,l−m , (7)

is also needed to derive the solution. The most probable
distribution is obtained by maximizing with respect to Ni,l

under the constraint of constant total numbers of monomers
N , L and total number of clusters Nc,

N =
N∑

i=0

L∑

l=0

i Ni,l L =
N∑

i=0

L∑

l=0

l Ni,l

Nc =
N∑

i=0

L∑

l=0

Ni,l .

(8)

The values Ni,l that minimize � are more transparently
written in terms of the parameter p, which is the ratio of the
number of bonded links to the total number of links p =
2(N + L − Nc)/( f N + 2L) as

ci,l = Awi,lξ
iηl , (9)

with the Lagrange multipliers

A = f̄
(1 − p)2

p
, ξ = N

(N + L)

p(1 − p) f −2

f̄
,

η = L

(N + L)

p

f̄
,

(10)

which yields

ci,l = f̄
(1 − p)2

p

[
N

(N + L)

p(1 − p) f −2

f̄

]i

×
[

L

(N + L)

p

f̄

]l

wi,l , (11)

with the average functionality defined by f̄ = ( f N + 2L)/

(N + L).
We then impose the conditions of detailed balance at

equilibrium needed to get a steady state solution

K j, j ′c j,m(∞)c j ′,m′(∞) = Fj, j ′,m,m′ c j+ j ′,m+m′ (∞), (12)

expressing the fact the number of clusters created by
aggregation must be equal to the number of clusters
disappearing by fragmentation. This equation gives an
expression for the segmentation rate

Fj, j ′,m,m′ = A(∞)K j, j ′
w j,mw j ′,m′

w j+ j ′,m+m′
= FSσ jσ j ′

w j,mw j ′,m′

w j+ j ′,m+m′
,

(13)
where FS = A(∞)KS is the rate for single bond
fragmentation. Using (9) in the Smoluchowski equation we
obtain

dci,l(t)

dt
=

[
1 − A(∞)

A(t)

]

×
[

1
2

∑

j+ j ′=i

∑

m+m′=l

c j,m K j, j ′c j ′,m′ −
∞∑

j=0

∞∑

m=0

ci,l Ki, j c j,m

]
(14)

and the rate equations have the usual form for irreversible
aggregation, provided that the time is changed t → τ

according to the rule

dτ =
[

1 − A(∞)

A(t)

]
dt, (15)

and the evolution equation for p(t) is given by

1

KS

dp

dt
= f̄ (1 − p)2 − A(∞)p. (16)

The solution of this equation, with initial condition p0 =
limt→0 p(t), is

p(t) = p∞
1 − �e−	t

1 − p2∞ �e−	t
, (17)

where p∞ = limt→∞ p(t) and

p∞ = 1 + A(∞)

2 f̄
−

√
A(∞)

f̄

[
1 + A(∞)

4 f̄

]
, (18)
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Figure 1. Graphic description of the A and B type particles (left) and
snapshot of the simulated system (right). The centers of the small
spheres locate the bonding sites on the surface of the hardcore
particle.

(This figure is in colour only in the electronic version)

	 = 2KS f̄

√
A(∞)

f̄

[
1 + A(∞)

4 f̄

]
= KS f̄

1 − p2∞
p∞

, (19)

� = 1

1 − p0 p∞

(
1 − p0

p∞

)
. (20)

In the limit A(∞) → 0 one recovers the irreversible
aggregation solution. The important point to note here is that
the FS solution is valid at each instant provided that the bond
probability is the appropriate function of time.

In the post-gelation regime, when a percolating cluster is
present, we assume the Flory hypothesis according to which
all reactive groups located on an isolated cluster or on the gel
remain equally reactive.

In the following sections we will discuss the comparison
of the theory with the results obtained using molecular dynam-
ics simulations of various systems, subject to irreversible or
reversible clustering.

3. Irreversible aggregation of ellipsoidal patchy
particles

To study the dynamics of the irreversible gelation process and
the evolution of the cluster size distribution a model inspired
by the formation of epoxy resin [15] from pentafunctional
diethylenetriamine (A particles) and bifunctional diglycidyl-
ether of bisphenol-A (B particles) was used. To incorporate
excluded volume and shape effects both molecules are
represented as hard homogeneous ellipsoids of appropriate
length, whose surface is decorated in a predefined geometry
by f identical reactive sites per particle (see figure 1). The
evolution of the system is studied via event-driven molecular
dynamics simulations, where the particles evolve through
Newtonian dynamics and bind irreversibly every time the
distance between two unreacted sites, on particles of opposite
type, becomes smaller than a predefined distance δ. The system

Figure 2. Time dependence of the fraction of bonds p(t) during
irreversible aggregation. Symbols are the simulation results while the
solid line is the solution of the Smoluchowski kinetic equation.

consists of a 5:2 binary mixture composed of NA = 480
ellipsoids of type A and NB = 1200 ellipsoids of type B, for
a total of N = 1680 particles. Type A particles are modeled
as hard ellipsoids of revolution with axes a = b = 2σ and
c = 10σ and mass m; type B particles have axes a = b = 4σ

and c = 20σ , mass 3.4 m. Simulations are performed at
temperature T = 1.0 and packing fraction φ = 0.3. Note that
temperature only controls the timescale of exploration of space
by modulating the average particle’s velocity. In the initial
configuration there are only monomers. During the evolution,
every time two reactive sites get closer than delta = 0.2σ ,
a bond is formed. To model irreversible gelation, once a
bond is formed it is made irreversible by switching on an
infinite energy barrier at distance r i j

AB = δ between the sites
involved (i, j ) which prevents the formation of new bonds in
the same sites and the breaking of the existing one. The model
satisfies the conditions of equal and independent reactivity of
all reactive sites. Moreover, even if the absence of closed
bonding loops is not explicitly implemented the condition is
realized. In fact it is favored by the small flexibility of the
bonded particles and their non-spherical shape.

The fraction p(t) of bonds formed, which measures the
extent of the reaction, increases monotonically until most of
the particles are connected in one single cluster and saturates
around 0.86, as shown in figure 2. The time dependence of p(t)
is found to agree with the theoretical predictions for loopless
aggregation, with percolation expected at pc = 0.5 that is
located at pc = 0.505 ± 0.007.

4. Reversible aggregation of ellipsoidal patchy
particles

The previous model of loopless clusters was extended to
the physical gel case by including a finite attraction strength
between bonding sites, which offers the possibility of carefully
checking the theoretical predictions. In particular we could
test the prediction that reversible aggregation dynamics is
represented by a sequence of equilibrium states, with the result
of closely connecting time and temperature.
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Figure 3. Temperature dependence of p∞, with pc = 0.5 the
percolation threshold. Symbols are simulation results while the solid
line represents (21) with �S/kB = 8.52 the best fitted value.

Figure 4. Time dependence of the fraction of bonds during reversible
aggregation at different temperatures (T = 0.17, 0.13, 0.12, 0.11,
0.10, 0.095, 0.09, 0.082, 0.07) from the lower to the higher
equilibrium value, starting from an unbonded configuration ( p0 = 0;
circles) or from a generic equilibrated configuration ( p0 �= 0;
squares). Lines are solutions of the Smoluchowski equation for
reversible aggregation.

We studied [16] via event-driven molecular dynamics
simulations a binary mixture composed of NA = 480
pentafunctional ( f A = 5) ellipsoids of type A and NB = 1200
bifunctional ( fB = 2) ellipsoids of type B, so that the number
of A-type reactive sites equals the number of B-type reactive
sites. The shapes and masses of the particles are the same as
used in the case of irreversible aggregation. The interaction
potential is the hard ellipsoid potential supplemented by site–
site square-well attractive interactions (of strength u0, and
width δ = 0.2σ ) between pairs of particles of different type.
The unit mass is m, the unit energy u0. Temperature is
measured in units of the potential depth (i.e. kB = 1) and time
in units of σ(m/u0)

1/2. The volume fraction is fixed at φ = 0.3

Figure 5. Cluster size distribution Nk . Equilibrium results (closed
symbols) are compared with results at different times during
irreversible aggregation (open symbols) using the correspondence
p(t) = p∞(T ). The solid lines are FS predictions.

and T is varied from T = 0.3 to 0.065. Two sites, on particles
of different types, form a bond if their distance is closer than
δ and each site is engaged in one bond at most. Starting from
a set of monomers, during the simulation at fixed temperature
bonds form and break continuously, while the system evolves
toward the equilibrium state, characterized by the equilibrium
value p∞(T ).

Figure 3 shows the equilibrium p∞(T ) for many
temperature values and the rather accurate theoretical
representation given by the independent-bond mass-action
law [17]

p∞
(1 − p∞)2

= eβ(u0−T �S) (21)

where u0 and �S are the energy and the entropy change
associated with the formation of a single bond. Figure 4
shows the time dependence of the bond probability in a
temperature jump experiment, starting either from a high
temperature monomer configuration where p(0) = 0 or
from an equilibrated configuration characterized by branched
aggregates p(0) �= 0. Lines in figure 3 are the theoretical
predictions with the Flory post-gel assumption [10] for p(t) >

pc. The theoretical expression represents the numerical data
very well, except for T � 0.07 when extensively bonded states
are reached, probably due to a failure of the Flory assumption
above the gel point.

Figure 5 shows the cluster size distribution Nk for three
different values of T , corresponding to p∞ values below, at
and above pc = 0.505 ± 0.007. Since, following the FS
approach, we expect that during irreversible aggregation the
system will follow a series of equilibrium states, we establish
a correspondence with reversible aggregation states at constant
temperature according to the rule p(t) = p∞(T ). At each
instant, data are identical to those obtained in equilibrium at
the same bond probability, demonstrating that the evolution
of the system structure and connectivity during irreversible
aggregation does follow a sequence of equilibrium states.

To summarize, a system of ellipsoidal shaped particles
with a limited set of attractive spots on their surface does

5
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Figure 6. Evolution of the bond probability for ρ = 0.0382 at three
different temperatures, T = 0.09, 0.08 and 0.065, and for an
irreversible aggregation case T = 0.01. Lines are solutions of the
Smoluchowski equations.

not generate loops of inter-particle bonds, and forms cluster
by aggregation dominated by bonding and not by diffusion,
and is well described by a mean field approach. In particular
the kinetics can be fully described, without fitting parameters,
by combining a thermodynamic approach of the Wertheim
type with the Smoluchowski kinetic equations including
coagulation and fragmentation terms. This applies to both
reversible and irreversible aggregation of branched systems.

5. Reversible aggregation of low functionality
spherical patchy particles

We also performed [18] Brownian dynamics simulations of
a binary mixture of 2835 particles with functionality f = 2
and 165 particles with f = 3, i.e. average functionality f̄ =
2.055, at several values of density and temperature, a model
whose equilibrium properties have been well characterized
recently [7]. Particles are hard spheres of diameter σ = 1 with
a surface decorated by two or three interacting sites. Sites on
different particles interact via a square-well potential of depth
u0 = 1 and interaction range δ = 0.119σ . The high-T limit
of this model is the hard-sphere fluid. On cooling, particles
bond to each other, forming polydisperse clusters which then
percolate and assemble, on further cooling, into a network of
long-lived bonds. The phase diagram of the system includes
a percolation line defined by the value p∞ = 0.9256 [7].
We studied the evolution of the system at constant ρ, after
a T -jump starting from a high-T unbonded configuration.
Temperature is measured in units of u0, while time is measured
in reduced units such that t = 1 corresponds to the time
required to diffuse a distance equal to the particle diameter.

The equilibrium condition for the bond probability derived
from (16) is

p∞
(1 − p∞)2

= f̄
KS

KF
(22)

and allows a connection with the thermodynamic perturbation
theory of Wertheim for associated liquids [7] which gives an

Figure 7. Evolution of the bond probability p(t) in an irreversible
aggregation process, quenched to T = 0.01, for several different
starting densities ρ as a function of the variable f̄ ρ�Wt . The dashed
line indicates the percolation threshold p = 0.9256.

expression for the same quantity as a function of density and
temperature

p∞
(1 − p∞)2

= ρ f �W(ρ)(eβu0 − 1), (23)

thus permitting a connection with the kinetic approach of
Smoluchowski. �W(ρ) can be calculated analytically, and in
terms of σ and δ one finds, indicating with φ = π

6 σ 3ρ the
volume fraction,

�W = πδ4(15σ + 4δ)/30σ 2

(1 − φ)3

×
[

1 − 5

2

(3σ 2 + 8δσ + 3δ2)

σ (15σ + 4δ)
φ − 3

2

(12δσ + 5δ2)

σ (15σ + 4δ)
φ2

]
.

(24)

One can then predict the T and ρ dependence of the
ratio between the single bond reaction rates and, apart
from a constant related to the timescale and the chosen
particle dynamics, provide a parameter-free description of the
evolution of the entire aggregation process.

Figure 6 shows the time dependence of p following the
T quench at constant density, starting from monomers and
approaching equilibrium. Figure 7 shows the time evolution of
p(t) following a quench to a very low temperature, T = 0.01,
equivalent to irreversible kinetics. Data at different densities
collapse on a master curve when reported as a function of
f̄ ρ�Wt , as predicted by the irreversible limit of (17) and the
Wertheim relation (23).

In this case too the structure of the system during
equilibration follows a sequence of equilibrium states as
predicted by the theory, as shown in figure 8. It gives the
cluster size distribution Nk of the system in equilibrium at
four distinct values of T and fixed ρ, and the corresponding
quantities during the equilibration process evaluated at times
tw chosen according to the relation p(tw) = p∞(T ). We stress
once again that mapping equilibrium and ageing properties
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Figure 8. Comparison between equilibrium (full lines) and ageing
(symbols) structural properties for ρ = 0.0038. The equilibrium data
refer to T = 0.1, 0.09, 0.08 and 0.07 at ρ = (6/π)0.02. The ageing
data refer to different equilibration processes, always starting from
the high temperature T = 1 where the system is composed only of
monomers, to several different final temperatures indicated in the
labels. Data refer to different times following the quench, tw, chosen
in such a way that p(tw) = p∞(T ).

hold only in the limit of loopless aggregating clusters, which
in turn implies small functionality. In fact it can be shown [19]
that systems with average functionality f̄ � 2.8 have a
negligible number of loops and fulfill rather well the mean field
predictions. Moreover diffusion does not play a relevant role in
the rate constants; these are mainly influenced by the difficulty
in interacting with the right orientation to form a bond, due
in turn to the range of attraction between sites which must be
small.
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